- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Brucy, N. (1)
-
Camacho, V. (1)
-
Eadie, G. (1)
-
Gent, F_A (1)
-
Girichidis, P. (1)
-
Hennebelle, P. (1)
-
Klessen, R_S (1)
-
Lebreuilly, U. (1)
-
Mac Low, M_-M (1)
-
Marin, J. (1)
-
Palau, A. (1)
-
Pattle, K. (1)
-
Pillsworth, R. (1)
-
Pudritz, R_E (1)
-
Robinson, H. (1)
-
Smith, R_J (1)
-
Soler, J_D (1)
-
Srinivasan, S. (1)
-
Sánchez Valido, L. (1)
-
Vázquez-Semadeni, E. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The relationship between magnetic field strength B and gas density n in the interstellar medium is of fundamental importance. We present and compare Bayesian analyses of the B–n relation for two comprehensive observational data sets: a Zeeman data set and 700 observations using the Davis–Chandrasekhar–Fermi (DCF) method. Using a hierarchical Bayesian analysis we present a general, multiscale broken power-law relation, $$B=B_0(n/n_0)^{\alpha }$$, with $$\alpha =\alpha _1$$ for $$n< n_0$$ and $$\alpha _2$$ for $$n>n_0$$, and with $$B_0$$ the field strength at $$n_0$$. For the Zeeman data, we find: $$\alpha _1={0.15^{+0.06}_{-0.09}}$$ for diffuse gas and $$\alpha _2 = {0.53^{+0.09}_{-0.07}}$$ for dense gas with $$n_0 = 0.40^{+1.30}_{-0.30}\times 10^4$$ cm$$^{-3}$$. For the DCF data, we find: $$\alpha _1={0.26^{+0.01}_{-0.01}}$$ and $$\alpha _2={0.77_{-0.15}^{+0.14}}$$, with $$n_0=14.00^{+10.00}_{-7.00}\times 10^4$$ cm$$^{-3}$$, where the uncertainties give 68 per cent credible intervals. We perform a similar analysis on nineteen numerical magnetohydrodynamic simulations covering a wide range of physical conditions from protostellar discs to dwarf and Milky Way-like galaxies, computed with the arepo, flash, pencil, and ramses codes. The resulting exponents depend on several physical factors such as dynamo effects and their time-scales, turbulence, and initial seed field strength. We find that the dwarf and Milky Way-like galaxy simulations produce results closest to the observations.more » « less
An official website of the United States government
